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Peak Internal Fields in Direct~Coupled-Cavity Filters*

LEO YOUNGf, SENIOR MEMBER, IRE

Sumrnar~-Microwave filters are limited in their power-han-
dling capacity by high fields generated inside the filter.

Simple formulas are derived here for the peak fields inside each

cavity of a direct-coupled-cavity filter at any frequency. The com-
puted peak fields in each cavity of a three-cavity, a four-cavity, and a
six-cavity filter as a function of frequency are reproduced up to sev-

eral harmonics. Inside the pass band, the internal fields are generally
minimum at center frequency, rising to sharp peaks just outside the
pass band.

Phase characteristics were also computed, and their relation to

the internal field amplitudes is explained.

INTRODUCTION

H, IGH-POWER applications of microwave filters

are becoming more numerousj–1 as the trans-
L

mitter power of radars is increased. Commonly

used are microwave band-pass filters, which generally

take the form of direct-coupled-cavity filters. Cohn has

obtained formulas for designing such filters to meet a

specified maximum insertion loss over a given pass

band,5 and has also discussed general design considera-

tions for such high-power filters.b

A more detailed analysis of the power-handling

capacity of direct-coupled-cavity filters is presented

here. Several filters were analyzed numerically, and re-

sults for a three-cavity, a four-cavity, and a six-cavity

filter are presented.

DEFINITIONS

All transmission lines and all obstacles in them will be

considered to have no dissipation losses. One can there-

fore associate a power flow with each traveling wave,

the net forward power flow being simply the difference

in the powers carried by the forward and backward

waves. The amplitude a, of a forward traveling wave
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(traveling towards the load) is defined in magnitude
by7,8

I aj 1’ = power flow due to the forward traveling

wave, (1)

and a similar definition holds for the amplitude, bi say,

of a backward-traveling wave (traveling towards the

generator).

The same peak amplitude as is produced inside a

cavity by internal reflections would occur in a properly

terminated transmission line without obstacles, if

sufficient power were fed into it. Thus, if ai and b~ are

the forward- and backward-wave amplitudes in the ith

cavity, and if aim is the amplitude of the forward travel-

ing wave at the filter input, then the equivalent power

ratio is defined by

(Iail+lbil 2
—

l~inl )

(2)

provided that a maximum of the standing wave occurs

inside the cavity.

EQUIVALENT POWER RATIOS IN THE CAVITIES

A direct-coupled-cavity filter is shown schematically

in Fig. 1. To find the peak amplitude inside the ith

section, let ai be the forward-wave amplitude (Fig. 2)

and r~ the reflection coefficient, in that cavity. Then, if

unit power emerges from the filter,

/u;]’- ]a,ril’=l. (3)

Therefore

I ail = (1 – ] 7,12)-1/2

Therefore, the peak internal amplitude is

(4)

times the magnitude of the wave amplitude emerging

from the filter, where S; is the VSWR seen in the ith

section. The ‘(equivalent power ratio” was defined by

(2) in terms of the incident power. It is thus given by

Equivalent power ratio in the ith cavity

= (VSWR seen in the ith cavity, S,) 1

1

. (6)

X (fraction of power transmitter by the filter)
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Fig. l—I,)irect-coUpled-cavity filter with shunt-inductive elements.
jBl, jBz, . . . , jBn+I are the normalized susceptances at band-
center of the N-cavity filter.
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Fig. 2—Showing wave amplitudes inside the tilter.

One has to be sure, of course, that the maximum of

the standing wave in each cavity occurs at a real posi-

tion inside the cavity, and not at a virtual position

beyond the cavity in question. In the case of cavities a

half-wavelength long or longer, this is always true. It

also holds at least near band-center for quarter-wave

transformers, and for the electric field in shunt-induc-

tively coupled cavities.

For waveguide filters with shunt-inductive irises, and

for coaxial line filters with shunt-inductive posts, the

reactance of the shunt-coupling element is approxi-

mately proportional to frequency, i.e., it behaves as an

inductor. A digital computer program for computing the

VSWR of such filters was available. By feeding in (for

instance) only the first four cavities of a six-cavity

filter, the VSWR in the fifth cavity was computed, The

fraction of power transmitted by the whole filter was

also computed by the same program applied to the

whole filter; and the equivalent power ratio in the fifth

(or any other) cavity was then determined from (6).

RELATION BETWEEN EQUIVALENT POWER RATIO

AND PHASE

A direct-coupled-cavity filter resembles a periodic

transmission system,g ‘1° in which the group velocity Vg

is given by

du

‘g= iii’
(7)

where u = radian frequency, and f? is the phase constant.

The phase change @ through a long section of length L

is then ~ = flL. For our present purposes, we may write

(8)
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Since v, is also the velocity of

one may write in a pass band,

(average energy density)

or,

Average energy density

which may be replaced by

613

propagation of energy,

X V, = const, (9)

1 (L#l
K— x-, (lo)

vg (’L

dd
Equivalent power ratio u —

d~,

x Rate of change of phase with frequency. (11)

Of course, this will hold only to the extent that our di-

rect-coupled-cavity filter resembles an infinite uniform

periodic structure.

The phase @ appearing in (11) and elsewhere above

refers to the total phase shift from input to output,

whereas the computer program was designed to give

the excess phase shift through the filter over the phase

shift through a uniform transmission line of the same

length. (One of the advantages of plotting the excess

phase shift is that it permits a more accurate graphical

description of phase change than does a plot of total

phase shift. Thus, in Fig. 5 the latter wouldl require an

ordinate range of several thousand degrees instead of

the several hundred degrees which are needed to plot

the excess phase shift.) To obtain @ from the plotted

(excess) phase shift, one then has to add back 3601 L/&

degrees, where L is the length of the filter and & i:j the

guide wavelength.

NUMERICAL RESLTLTS

Three different filters were investigated. Their circuit

parameters are first given:

Filter 1; Number of cavities, n =6:

Susceptances (see Fig. 1):

B1 = B7 = 1.’77977 at band-center

BZ = BG = 6.40453 at band-center

B3 = B5 = 9.54427 at band-center

BiI = 10.15377 at band-center.

Spacings (see Fig. 1):

01 = 66 = 147.161° at band-center

62 = Ob = 165.411° at band-center

03 = 01 = 168.511° at band-center.

Over-all length of filter

962.166
. wavelengths at band-center.

360
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Filter 2; n=4:

BI=B5= 2.84605 at band-center.

13, =B3=B4= 9.90000 at band-center.

01 = Oh = 156.741° at band-center.

OZ = 03 = 168..579° at band-center.

Over-all length of filter:

650.640
—— wavelengths at band-center.

360

Filter 3; n=3:

BI=B4= 0.50000 at band-center.

Bz=Ba= 1.20000at band-center.

6’1 = 03 = 112.500° at band-center.

02 = 120.964° at band-center.

1 i

-1oo”
PHASE

/’-

/,

I JSE

I 20
-500”

I 10

-900”

I 00 go
I 00 110

FREQUENCY-

Fig. 3—VSWR and phase vs frequency of the six-cavity filter
(Filter 1) over the lowest pass band.
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Fig. 4—Equivalent power ratios in the six cavities of
Filter 1 over the lowest pass band.

Over-all length of filter

345.964
wavelengths at

360

DISCUSSION

FilteY 1

November

band-center.

The performance of Filter 1 is dealt with in Figs.

3–6. This is a six-cavity filter, the same one which is

described in Fig. 9 of Cohn.5 It has a 9.5 per cent band-

width inside which the maximum VSWR is 1.113. This

will be called its pass band. Its VSWR and (excess)

phase response are plotted in Fig. 3 over and near the

pass band. NTote that here and throughout the graphs,

the frequency axis should be labeled proportional to

“reciprocal guide wavelength” in the case of dispersive

waveguides.

The equivalent power ratios inside and just beyond

the pass band are plotted against frequency for cavities

1 to 6 in Fig, 4(a)–4(f), By “Cavity 1“ is meant the

u Lo 20 40
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Fig. 5—VSWR and phase vs frequency of the six-cavity filter
(Filter 1) up to the fourth harmonic.
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Fig. 6—Equivalent power ratios in the six cavities of Filter 1
up to the fourth harmonic.
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cavity nearest the load, while “Cavity 6“ is the one

nearest the generator. For most of the curves, so many

points were computed that a continuous curve is shown.

Where only a small number of points were computed,

as in Fig. 4(d) and (e), the computed points are shown

by circles and joined by straight lines.

The greatest equivalent power ratio inside the pass

band occurs in Cavity 4 at each edge of the band, where

it reaches the value 20. This is twice as much as the

equivalmt power ratio in the same cavity at band-center.

The greatest equivalent power ratio auywhere occurs in

Cavity 5 just outside the lower end of the pass band,

where it reaches at least 33.5.

The over-all length of the filter, i.e., the sum of the

six cavity lengths, is 962.166° at band-center. An un-

loaded uniform transmission line of this length in-

creases its electrical length by 9.62° whenever the fre-

quency increases by 1 per cent of the center frequency.

This has to be added to the slope of the (excess) phase

shift vs frequency curve plotted in Fig. 3 to get the

total rate of change of phase with frequent y, which,

according to (11), should be approximately propor-

tional to the equivalent power ratio in any cavity. It

is clear by visual inspection that the slope of the phase

plot in Fig. 3 does indeed rise and fall as the equivalent

powers in all cavities except the first [Fig. 4(b)-(f)].

h’fore precisely, if the slopes are determined from Fig. 3,

and 9.62° per 0.01 change in frequency is added, then

the respective slopes of the total phase shift at~= 0.947,

1.00, ar,d 1.06, where they are maximum, minimum, and

maximum in turn, are in the ratio 2.2:1:1.8, which is in

fair agreement with (11) and Fig. 4.

Figs. 5 and 6 represent the same six-cavity filter,

plotted from below the first pass band to beyond the

fourth harmonic. The same double humps in the

equivalent power ratios are observed, but they get

more “blurred” as the frequency and cavity number

increase. The (excess) phase vs frequency slope in the

graphs sometimes appears negative because, as ex-

plained before, it has been computed as a phase shifter;

when the phase slope of 9.62 degrees per 0.01. increase in

frequercy is added, the curve always takes on a positive

slope, with a staircase appearance.

Filte? 2

This is a four-cavity filter, and is based on another

one of (Cohn’s examples. e This one was selected to have

gl = ~ = gs = gl = 1, which maximizes the power handling

capacity for a given degree of selectivity.6 Unfortu-

nately, the l’SbVR inside the pass band is not very good

(Fig. 7). Here g, =0.1 is used to define the filter. (Cohn’s

filter is defined differently; it corresponds to go= 0.08.)

The phase vs frequency curve (Fig. 7) is remarkably

straight over most of the band, and the equivalent

power ratio in most cavities stays relatively constant

over the same portion of the band, as would be ex-

pected from (1 1). There are the same two familiar

sharp peaks of equivalent power ratio just outside the

band, corresponding to the two kinks in the phase

curve. Compare Figs. 7 and 8(a)–(d).

Fig. 4 of Cohne plotted the relative electric field

strength against the frequency parameter u’ of the

prototype filter, taking it from O’= O to w’ = 1.1. ‘l~his

corresponds approximately to the range -f= 0.97 to

~= 1.03 in our frequency scale.” The twill peaks of the

equivalent power ratio against frequency curves occur

at the very edges of the pass band, at approximately

.f= 0.95 and j= 1.05, and so are beyond the frequency

range covered in Cohu’s Fig. 4.

H Dr. Cohr, has pointed out to the author that in Fig. 4 in “Design
considerations for high power microwale filters” (oP. cit.), Curves 3
and 4 were inadvertently interchanged. The agreement with F ig. 8
here is then quite close,
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Fig. 7—ITSWR and phase vs frequency of the four-cavity
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Fig. 8—Equivalent power ratios in the four ca~-ities of Filter 2
over the lowest pass band.
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Fig. 9—VSWR and phase vs frequency of the three-cavity
filter (Filter 3) up to the third harmonic.
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Fig. 1O—VSWR and phase vs frequency of the three-cavity
filter (Filter 3) over the lowest pass band.

Filter 3

This filter12 has three cavities. They are much more

strongly coupled than in the previous two examples.

The highest VSWR above the pass band is only 7.4

(Fig. 9). It has a 30.6 per cent pass band, inside which

the VSWR never exceeds 1.07 (Fig. 10). The phase

‘2 L. Young, “The quarter-wave transformer prototype circuit, ”
IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-8,
pp. 483–489; September, 1960.
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Fig. 1l—Equivalent power ratios in the three cavities of Filter 3
up to the third harmonic.

plots are also given in Figs. 9 and 10. The equivalent

power ratios in each cavity are plotted beyond the third

harmonic in Fig. 11 (a)–l 1 (c). The general behavior is as

noted in the previous two examples.
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